2 ### Fit For Golf - Contents - How 'physical' fits in golf performance models - Using benchmarks - The physical-golf performance continuum - How physical training of golfers works - Golf injury - · Case studies Copyright Scott Williams 20 | Time available for maxime
(Verkoshansky | | |---|-----------------| | Sporting Movement | Time in Seconds | | Sprinting (Foot Strike) | 0.08-0.12 | | Jumping | 0.17-0.18 | | Shot Put Release | 0.15-0.18 | | Golf Downswing | 0.20-0.30 | | Powerlifting (Deadlift, Bench Press, Back
Squat) | 0.80-4.0 | | Copyright Scott Willia | ins 2022 | - - Allows more time for acceleration in downswing & able to remain more balanced - Thoracic rotation moderately correlated with CHS (Keogh et al 2009) - Left hip internal rotation & R shoulder external rotation are also important (Vad et al 2004, Sell et al 2007) 47 #### How do we train to increase power? - · Produce force rapidly - Strengthen weak athletes - Speed up slow athletes - Include a stretch-shorten-cycle/reflex: A coordinated sequence of movement of body segments creates a stretch-shorten cycle in the musculo-tendinous structures allowing for an increased acceleration of the more distal segment Copyright Scott Williams 20 | Specific Muscle Function Required for Golf (Adapted Mchardy & Pollard 2005) | | | | | | | | | | | | | |---|------------------------------|--------------------|--|---------------------------|----------------------|---|---|---------------|--------------------------------|---|----------------------|---| | Phase
of
swing | Left upper
body/trunk | Phase
type | Strength
type | Right upper
body/trunk | Phase
type | Strength
type | Left lower
body/trunk | Phase
type | Strength
type | Right lower
body/trunk | Phase
type | Strength
type | | Back
swing | Subscapularis
(33%) | Con | Control +
Starting | Upper
trapezius (52%) | Con | Control | Erector
spinae (26%) | Iso &
Con | Strength
Control | Semimembra
nosus (28%) | Ecc &
Iso | Decelerat
ion | | | Upperserratus
(30%) | Con | Control +
Starting | Middle
trapezuis (37%) | Con | Control | Abdominal oblique (24%) | Con | Strength
Control | Long head of
the biceps
femoris (27%) | Ecc &
Iso | Decelerat
ion | | Porwar
ds wing | Rhomboid (68%) | Ecc,
Bo&
Con | Deceleration & SSC
+
Explosive | Pectoralis
major (64%) | Ecc,
Iso &
Con | Decelerat
ion & RA
+
Explosive | Vastus
lateralis (88%) | Ecc | Max +
Decelerati
on | Upper and
lower gluteus
maximus
(100 % and
98%) | Ecc,
Iso &
Con | Decelerat
ion & RA
+
Explosiv
& Max | | | Middle trapezius
(51%) | Ecc,
Bo&
Con | Decelerat
ion & SSC
+
Explosive | Upper serratus
(58%) | Ecc,
Iso &
Con | Decelerat
ion & RA
+
Explosive | Adductor
magnus (63%) | Con | Starting
Strength
+ Max | Biceps
femoris (78%) | Iso &
Con | RA +
Explosive
+ Max | | Acceler
ation | Pec to ralis major
(9 3%) | во | Maximal
Strength | Pectoralis
major (93%) | Con &
Iso | RA +
Explosive
& Max. | Biceps
femoris (83%) | Ecc &
Iso | Max +
Decelera | Abdominal
oblique
(59%) | Ecc,
Iso &
Con | Decelerat
ion & SSC
+
Explosiv | | | Levatorscapulae
(62%) | Con | SSC +
Explosive | Upper serratus
(69%) | Con &
Iso | Explosiv.
& Max. | Upper and
lower gluteus
maximus,
vastus
lateralis (58%) | Iso &
Con | Decelerati
on + Max
+ RA | Gluteus
medius (51%) | Ecc,
Iso &
Con | Decelerat
ion & SSC
+
Explosiv | | Early
follow
through | Pectoralis major
(74%) | BO &
Ecc | Max +
Deceleration | Pectoralis
major (74%) | Iso &
Con | Explosive
+ Max. | Long head of
biceps
femoris (79%) | Ecc | Decelerati
on | Gluteus
medius (59%) | Con | Speed
Strength | | | Infraspinatus
(61%) | Con | Explosive
+ Speed-
Strength | Subscapularis
(64%) | Con | Explosive
+ Speed
Strength | Vastus
lateralis (59%) | Con | Decelerati
on | Abdominal oblique (51%) | Con | Explosive
& Speed-
Strength | | Late
follow | Infraspinatus
(40%) | Con | Speed-
Strength | Subscapularis
(56%) | Con | Speed-
Strength | Semimembra
nosus and | Iso | Static
Strength | Vastus
Iateralis | Con & | Speed-
Strength | | Most Highly Used Strength Types For Golf | | | | | | | | |--|--|---|----------------|-----------------|--|--|--| | Туре | Description | Utilised | Load | Speed | | | | | Explosive
Strength
(Reactive
Ability) | Maximum force in minimum time. Used in exercises and movements where the main muscular contraction is preceded by a mechanical stretch. The switch from stretching to active contraction uses the elastic energy of the stretch to increase the power of the subsequent contraction. The muscles ability to maximise the stretch reflex and create a stretch-shorten cycle is called its reactive ability (RA). Measured as max rate of force dev. | Transition to downswing. The better the reactive ability the less perceived effort in the swing. | Low to
High | Fast | | | | | Speed-
Strength | Ability to quickly execute an un-loaded movement or a movement against a relatively low external force. Measured by velocity. | Downswing to impact | Low | Fast | | | | | Deceleration
Strength | Ability to quickly stop a movement under low or high force. | Trail side in backswing
and lead side before
impact | Low to
High | Fast | | | | | Maximal
Strength | Athlete's strength potential. Maximum voluntary isometric force that can be produced with no time limit. | Downswing and Impact | High | Slow to
Mod | | | | | Starting
Strength | Ability of the muscles to develop force at the beginning of the working contraction before external movement occurs. Measured as initial rate of force development. | | High | Fast | | | | | Static &
Explosive
Strength
Endurance | Ability to maintain muscular functioning under work conditions of long duration. Holding a given position or posture would be considered static strength endurance. Explosive strength endurance is repetitively executing explosive efforts. | Static for correct
posture during practice
and play . Explosive for
quality long game
practice. | Low | None | | | | | Strength
Control
(Neuro-
Muscular
Control) | Ability to maintain optimal posture and quality of movement through joint ranges. | Underpins all
movements in the
swing and all allows for
technical retraining | Low | Slow to
Mod | | | | | Strength over
Range of
Motion | The ability to exert force over the full amplitude or range of movement. | Allows dynamic correction of swing and ability to maximise | Low to
High | Slow to
Fast | | | | 71 ### His Program - Address weaknesses in 3rd session per week + 15min extra program per day... - Steady progression with lower weights for first 3 months of S&C program - Estimated 1RMs: - -May 2018: Deadlift= 80Kg, Back Squat= 40Kg, Bench Press= 50Kg - -October 2018 = 140Kg, Back Squat= 87Kg, Bench Press 61Kg Copyright Scott Williams 202 | 2011: Golf specific & travel programs, functional strength progression, posture focussed, began power training. | | | | | | | |---|-------------------------------|--|--|--|--|--| | | | | | | | | | | Capyright Scott Williams 2021 | | | | | | | | | | | | | | # December 2011 to June 2012: Level 3 strength, power & speed training - Begin progression towards using Olympic lifting - · Learn all compound lifts - · Build strength, power & speed concurrently - Periodised emphasis on golf specific and more speed oriented as we get closer to competition Copyright Scott Williams 202 92 ## 2012: Level 4: Strength, power & speed block training system - Build Strength then Power then Speed separately and in that order then taper for competition - Introduce Triphasic Training in Strength Block - Introduce Novice Olympic Lifting as Part of Power Block - Introduce Oscillatory Method for faster relaxation in Speed & Golf-Specific Block Copyright Scott Williams 2022 # References 1. Williams, S. B. (2021). Relationships between physical measures, technical measures and golf performance.\ 2. Keggh, J. W. L. Marmowick, M. C., Maidler, P. S., Nortje, J. P., Humo, P. A., & Badabaw, E. J. (2009). Are authropometric, flexibility, Conditioning Research, 2, 1344-1350. 3. Torres-Ronda, L., Delestra, A., & Gorvalec-Badillo, J. (2014). The relationship between golf performance, anthropometric, measured and conditioning Research, 2, 1344-1350. 3. Torres-Ronda, L., Delestra, A., & Gorvalec-Badillo, J. (2014). The relationship between golf performance, anthropometric, muscular formation of the condition